Syllabus for B. Sc. VI Semester Optional Physics

PHY 602: Paper -6.2 Material Science & Electronics-II

Total hours of teaching: 42 hrs

1. Materials Science

4 hrs

Scope of Materials science, engineering classification of materials, engineering requirement of materials, crystalline and non-crystalline states of materials.

2. Bonding in materials

4 hrs

Covalent bonding, ionic bonding and metallic bonding. Give examples and discuss covalent solids, ionic solids and metallic solids.

3. Mechanical properties of materials

4 hrs

Strength, elasticity and hardness (give examples and compare properties of different materials), fatigue, creep and fracture.

4. Electrical and thermal properties of materials

4 hrs

Conductivity of metals, semiconductors and superconductors. Dielectric properties of insulators (dielectric properties), thermal conductivity and thermal expansion

5. Thin films 3 hrs

Definition, methods of preparation: physical and chemical, thermal evaporation in vacuum (describe experiment), Sputtering Technique applications of thin films.

6. Nanophysics & nanomaterials:

4 hrs

Nanoscale systems, size effect, correlation with quantum mechanical particle in a box, quantum structures, quantum wells. Synthesis of nano materials, characterization and applications (qualitative).

7. Oscillators: 6 hrs

Concept of Feedback Positive, negative feedback Sinusoidal oscillators: Tuned oscillators-Barkhausen criterion for oscillations, Hartly and Colpitt's oscillators. RC oscillators – Phase shift oscillator and Wien Bridge oscillator. Non-sinusoidal oscillators: Astable, Monostable and Bi-stable multivibrators.

8. Digital Electronics:

6 hrs

Number systems: Decimal, Binary, Hexadecimal and their inter —conversion. Boolean algebra, K- maps, basic theorems, Logic gates; OR, AND, NOT, NAND and XOR gates. Half adder, full adder and adder. Flif flops; RS, D, JK and M/S filp flops, counters — Serial and Parallel counters, modified counter, shift register, ring counter, shift counter and

mod – 16 counter.

9. Radio Communication:

7 hrs

Radio – wave propagation, need for modulation, Amplitude modulation, modulation factor, side band. band width, power in AM wave, Frequency modulation, de-modulation, super-hetrodynes. Block diagrams of AM & FM receivers. Selectivity, sensitivity, dynamic range, image frequency and image rejection (Qualitative).

Reference books

- 1. Materials Science and processes by S.K.Hajra Choudhury
- 2. Materials Science by Raghavan V
- 3. Material Science, M. Arunugam, Anuradha agencies, Kumbakonam (2002)
- 3. Applied electronics by R.S. Sedha
- 4. Operational Amplifiers and linear integrated Circuits by Ramakanth Gayakawad
- 5. Digital Principles and Applications by Malvino and Leach.
- 6. Digital Electronics by Gathmann
- 7. Electronics Communication by Sanjeev Gupta.
- 8. Integrated Circuits by K R Botkar, Khanna Publilshers.
- 9. Introduction to Solid State physics by C Kittel.
- 10. Solid State Physics by A J Dekkar.
- 11. Introduction to Solid State Physics by J S Blackmore.

26

PHYL6.2: Practical course for Semester VI Instructions

- 1. Two experiments (3 hours duration each) per week should be performed.
- 2. One practical internal test of 3 hours duration for 15 marks be conducted at the end of practical course in the semester.
- 3. Minimum of 6 experiments should be performed in semester VI.

List of experiments

- 1. Determination of capacitance of capacitor using Maxwell's bridge.
- 2. Colpitt's oscillator using transistor.
- 3. Construction of OR, AND, NOT, NOR & NAND gates using diodes/transistor/IC and verification of their truth tables.

27

- 4. Verification of de Morgan's theorem. (using ICs)
- 5. Verification of truth table of half adder and full adder. (using ICs)
- 6. Absorption coefficient of aluminum for β rays.
- 7. Attenuation coefficient of γ rays.
- 8. Construction and verification of RS and JK flip- flops.
- 9. Study Op-Amp characteristics: Determine Offset voltage and CMMR
- 10. Operational Amplifier: voltage to current and current to voltage converter
- 11. Operational Amplifiers Inverting and Non- inverting.
- 12. Measurement of resistance of thin films by four- probe method.
- 13. Interplanar Spacing X-ray diffraction.
- 14. Maping of HR diagram.
- 15. Estimation of Cholorophill in plant cel